Att bekämpa översvämningar med (eller utan) AI
Att skriva om översvämningar känns en smula märkligt efter en rekordvarm sommar med torka och skogsbränder (även om Uppsala centralstation översvämmades av störtregn i slutet av juli). Men vad annat kan jag göra när Wired skriver en spännande artikel om hur AI kan användas för att förebygga just översvämningar? Och eftersom vi kan förvänta oss mer extremt väder i takt med att planeten blir allt varmare så kan vi inte börja tänka på den här sortens frågor snart nog.
I Wired-artikeln beskrivs hur man med hjälp av AI skapat en karta som kan användas för att övervaka risken för översvämningar. I texten kan man plocka upp tre punkter som är återkommande för i stort sett alla AI-projekt:
- AI-system behöver stora mängder data för att byggas upp – och som så ofta är fallet så var det i det här projektet väldigt arbetsintensivt att samla ihop och strukturera de data som användes.
- Men, efter en stor arbetsinsats i inledningen av projektet kan AI sedan användas för att automatisera processen. När man senare vill uppdatera sina kartor går det i ett nafs.
- Att likt artikelns rubrik påstå att ”AI förebygger naturkatastrofer” är att överdriva. AI löser oftast inte hela problem åt oss, utan är ett verktyg som används som ett steg i problemlösningen. I det här fallet hjälper de AI-skapade kartorna oss att övervaka vattenflöden och risker. I slutändan är det ändå människor som väljer att göra eller inte göra något utifrån den informationen.
Neurala nätverk och andra populära AI-verktyg är fantastiska när vi vill automatisera olika rutinartade uppgifter, men kan få problem när de ställs inför helt nya situationer. Eller när man ber dem att komma med prognoser för vad värsta möjliga utfall är. Ett exempel är frågan om hur högt vattenståndet som högst kommer vara i Fyrisån de kommande hundra åren. Svaret på den frågan är enormt viktigt när man planerar bebyggelse kring ån – vi kan inte nöja oss med att undvika översvämningar ett genomsnittligt år utan måste förstås bygga med marginal så att vi även slipper dem de år då vattnet står som högst. Här räcker dagens AI-lösningar inte till, men det finns utmärkta matematiska modeller som går att använda för att få en bra uppfattning om hur illa det kan gå. Sådana så kallade extremvärdesmodeller kommer jag att återkomma till i ett framtida blogginlägg (och de kan förresten också användas för att förutspå hur varmt 2000-talets varmaste julimånad kommer vara, eller hur lite regn som kommer falla under århundradets värsta torka).