Som statistikkonsult stöter jag på mängder av olika frågeställningar från alla möjliga branscher. För att besvara dem krävs ibland mycket funderande och avancerade statistiska modeller. Men i en del andra fall handlar det om rutinartade analyser, där dataanalysen ser likadan ut dag efter dag. Ett bra exempel på det är analys av hur fort olika bakterier växer i mikrobiologiska experiment, där man ofta är intresserad av att se om olika egenskaper hos bakterierna påverkar deras tillväxthastighet.
För att hjälpa forskare och företag med sådana analyser har jag utvecklat Bioscreen Analysis Tool – förkortat BAT – ett gratis program som körs direkt i webbläsaren och som låter användaren snabbt och enkelt analysera resultatet av hundratals experiment.
BAT används idag av universitet och företag på fyra kontinenter. I de flesta fall kan programmet på egen hand utföra hela analysen, med en analysmotor byggd med verktygen R och Shiny, men i de fall där bakteriernas tillväxt avviker från det normala får användaren styra analysen genom ett grafiskt gränssnitt:
När man behöver utföra samma sorts tidskrävande analys gång på gång kan det vara en bra idé att automatisera det arbetet. Man behöver då en väl vald statistisk metod, verktyg för att kontrollera om något avviker från hur data brukar se ut samt ett gränssnitt som gör det lätt för användare som inte är experter på statistik att göra analyserna. En gång i tiden försökte man åstadkomma det här med komplicerade Excelark, men med R och Shiny kan vi idag skapa bättre, flexiblare och tydligare verktyg. Allt för att göra korrekta analyser på enklast möjliga vis.
- Behöver ni hjälp med automatiserad dataanalys? Kontakta mig så ser vi hur jag kan hjälpa er.