Jag har de senaste dagarna skrivit om svårigheter med att utveckla AI för medicinsk användning samt om problem som kan uppstå när medicinska AI-tekniker används för andra syften. Dags så för ett mer positivt exempel – Vetenskapsradion rapporterade igår om en ny artikel i tidskriften Annals of Oncology, där en tysk forskargrupp använt AI för att utifrån bilder på hudförändringar upptäcka hudcancer.
När diagnostiska metoder utvärderas finns det två mått som är särskilt intressanta:
- Specificitet: hur stor andel av de sjuka patienter som diagnosticeras som sjuka – en metod med hög specificitet missar sällan sjuka patienter.
- Sensitivitet: hur stor andel av de friska patienterna som inte får sjukdomsdiagnosen – en metod med hög sensitivitet ger sällan felaktigt patienter en diagnos.
Svårigheten med det här är att så metoder som har hög specificitet ofta har låg sensitivitet, och vice versa – ska man verkligen upptäcka alla sjuka patienter måste man ta med många tveksamma fall, och då fångar man automatiskt upp många friska patienter också.
De 58 dermatologer som användes som jämförelsegrupp i den tyska studien nådde en specificitet på 75,7 % och en sensitivitet på 88,9 %. AI:n nådde vid samma sensitivitet en specificitet på 82,5 % och presterade därmed bättre än dermatologerna. Ett fint resultat för AI inom medicin! Metoden som användes – faltningsnätverk, kallade convolutional neural networks på engelska – har under flera år rönt stora framgångar inom andra problem som går ut på att få information från bilder.
I en ganska nära framtid kommer vi att se den här sortens verktyg för privat bruk – exempelvis en app i telefonen som kan bedöma hudförändringar. I sådana sammanhang blir det väldigt intressant med ansvarsfrågor. Vem är egentligen ansvarig om din app inte lyckas upptäcka din hudcancer?
- Jag har jobbat i flera projekt med biomarkörer och omikdata, bland annat rörande cancer – just nu i ett projekt om leukemi. Kontakta mig om ni vill ha hjälp med planering och analys av biomarkörstudier.
- Jag ger också föredrag om användning av AI inom medicin.